Papers
Topics
Authors
Recent
2000 character limit reached

Weak Coupling Expansion of Yang-Mills Theory on Recursive Infinite Genus Surfaces

Published 23 Jul 2014 in hep-th | (1407.6380v2)

Abstract: We analyze the partition function of two dimensional Yang-Mills theory on a family of surfaces of infinite genus. These surfaces have a recursive structure, which was used by one of us to compute the partition function that results in a generalized Migdal formula. In this paper we study the `small area' (weak coupling) expansion of the partition function, by exploiting the fact that the generalized Migdal formula is analytic in the (complexification of the) Euler characteristic. The structure of the perturbative part of the weak coupling expansion suggests that the moduli space of flat connections (of the SU(2) and SO(3) theories) on these infinite genus surfaces are well defined, perhaps in an appropriate regularization.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.