On possible existence of HOMFLY polynomials for virtual knots
Abstract: Virtual knots are associated with knot diagrams, which are not obligatory planar. The recently suggested generalization from N=2 to arbitrary N of the Kauffman-Khovanov calculus of cycles in resolved diagrams can be straightforwardly applied to non-planar case. In simple examples we demonstrate that this construction preserves topological invariance -- thus implying the existence of HOMFLY extension of cabled Jones polynomials for virtual knots and links.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.