Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A DEIM Induced CUR Factorization (1407.5516v2)

Published 21 Jul 2014 in math.NA and cs.NA

Abstract: We derive a CUR matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix $A$, such a factorization provides a low rank approximate decomposition of the form $A \approx C U R$, where $C$ and $R$ are subsets of the columns and rows of $A$, and $U$ is constructed to make $CUR$ a good approximation. Given a low-rank singular value decomposition $A \approx V S WT$, the DEIM procedure uses $V$ and $W$ to select the columns and rows of $A$ that form $C$ and $R$. Through an error analysis applicable to a general class of CUR factorizations, we show that the accuracy tracks the optimal approximation error within a factor that depends on the conditioning of submatrices of $V$ and $W$. For large-scale problems, $V$ and $W$ can be approximated using an incremental QR algorithm that makes one pass through $A$. Numerical examples illustrate the favorable performance of the DEIM-CUR method, compared to CUR approximations based on leverage scores.

Citations (123)

Summary

We haven't generated a summary for this paper yet.