Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symblicit algorithms for optimal strategy synthesis in monotonic Markov decision processes (1407.5396v1)

Published 21 Jul 2014 in cs.LO, cs.DS, and cs.SY

Abstract: When treating Markov decision processes (MDPs) with large state spaces, using explicit representations quickly becomes unfeasible. Lately, Wimmer et al. have proposed a so-called symblicit algorithm for the synthesis of optimal strategies in MDPs, in the quantitative setting of expected mean-payoff. This algorithm, based on the strategy iteration algorithm of Howard and Veinott, efficiently combines symbolic and explicit data structures, and uses binary decision diagrams as symbolic representation. The aim of this paper is to show that the new data structure of pseudo-antichains (an extension of antichains) provides another interesting alternative, especially for the class of monotonic MDPs. We design efficient pseudo-antichain based symblicit algorithms (with open source implementations) for two quantitative settings: the expected mean-payoff and the stochastic shortest path. For two practical applications coming from automated planning and LTL synthesis, we report promising experimental results w.r.t. both the run time and the memory consumption.

Summary

We haven't generated a summary for this paper yet.