Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum likelihood estimation and Expectation-Maximization algorithm for controlled branching processes (1407.5341v3)

Published 20 Jul 2014 in math.ST, stat.CO, and stat.TH

Abstract: The controlled branching process is a generalization of the classical Bienaym\'e-Galton-Watson branching process. It is a useful model for describing the evolution of populations in which the population size at each generation needs to be controlled. The maximum likelihood estimation of the parameters of interest for this process is addressed under various sample schemes. Firstly, assuming that the entire family tree can be observed, the corresponding estimators are obtained and their asymptotic properties investigated. Secondly, since in practice it is not usual to observe such a sample, the maximum likelihood estimation is initially considered using the sample given by the total number of individuals and progenitors of each generation, and then using the sample given by only the generation sizes. Expectation-maximization algorithms are developed to address these problems as incomplete data estimation problems. The accuracy of the procedures is illustrated by means of a simulated example.

Summary

We haven't generated a summary for this paper yet.