Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory (1407.5144v3)

Published 19 Jul 2014 in math.OC, cs.CC, cs.IT, and math.IT

Abstract: We present an information-theoretic approach to lower bound the oracle complexity of nonsmooth black box convex optimization, unifying previous lower bounding techniques by identifying a combinatorial problem, namely string guessing, as a single source of hardness. As a measure of complexity we use distributional oracle complexity, which subsumes randomized oracle complexity as well as worst-case oracle complexity. We obtain strong lower bounds on distributional oracle complexity for the box $[-1,1]n$, as well as for the $Lp$-ball for $p \geq 1$ (for both low-scale and large-scale regimes), matching worst-case upper bounds, and hence we close the gap between distributional complexity, and in particular, randomized complexity, and worst-case complexity. Furthermore, the bounds remain essentially the same for high-probability and bounded-error oracle complexity, and even for combination of the two, i.e., bounded-error high-probability oracle complexity. This considerably extends the applicability of known bounds.

Citations (26)

Summary

We haven't generated a summary for this paper yet.