ADHA: Automatic Data layout framework for Heterogeneous Architectures (1407.4859v1)
Abstract: Data layouts play a crucial role in determining the performance of a given application running on a given architecture. Existing parallel programming frameworks for both multicore and heterogeneous systems leave the onus of selecting a data layout to the programmer. Therefore, shifting the burden of data layout selection to optimizing compilers can greatly enhance programmer productivity and application performance. In this work, we introduce {\ADHA}: a two-level hierarchal formulation of the data layout problem for modern heterogeneous architectures. We have created a reference implementation of ADHA in the Heterogeneous Habanero-C (H2C) parallel programming system. ADHA shows significant performance benefits of up to 6.92$\times$ compared to manually specified layouts for two benchmark programs running on a CPU+GPU heterogeneous platform.