Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Filtering Ensemble for Personalized Name Recommendation (1407.4832v1)

Published 16 Jul 2014 in cs.IR, cs.AI, and cs.LG

Abstract: Out of thousands of names to choose from, picking the right one for your child is a daunting task. In this work, our objective is to help parents making an informed decision while choosing a name for their baby. We follow a recommender system approach and combine, in an ensemble, the individual rankings produced by simple collaborative filtering algorithms in order to produce a personalized list of names that meets the individual parents' taste. Our experiments were conducted using real-world data collected from the query logs of 'nameling' (nameling.net), an online portal for searching and exploring names, which corresponds to the dataset released in the context of the ECML PKDD Discover Challenge 2013. Our approach is intuitive, easy to implement, and features fast training and prediction steps.

Citations (2)

Summary

We haven't generated a summary for this paper yet.