Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
94 tokens/sec
DeepSeek R1 via Azure Premium
94 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
198 tokens/sec
2000 character limit reached

Compressive Periodogram Reconstruction Using Uniform Binning (1407.4017v2)

Published 9 Jul 2014 in cs.OH and math.SP

Abstract: In this paper, two problems that show great similarities are examined. The first problem is the reconstruction of the angular-domain periodogram from spatial-domain signals received at different time indices. The second one is the reconstruction of the frequency-domain periodogram from time-domain signals received at different wireless sensors. We split the entire angular or frequency band into uniform bins. The bin size is set such that the received spectra at two frequencies or angles, whose distance is equal to or larger than the size of a bin, are uncorrelated. These problems in the two different domains lead to a similar circulant structure in the so-called coset correlation matrix. This circulant structure allows for a strong compression and a simple least-squares reconstruction method. The latter is possible under the full column rank condition of the system matrix, which can be achieved by designing the spatial or temporal sampling patterns based on a circular sparse ruler. We analyze the statistical performance of the compressively reconstructed periodogram including bias and variance. We further consider the case when the bins are so small that the received spectra at two frequencies or angles, with a spacing between them larger than the size of the bin, can still be correlated. In this case, the resulting coset correlation matrix is generally not circulant and thus a special approach is required.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube