Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Depth Reconstruction from Sparse Samples: Representation, Algorithm, and Sampling (1407.3840v4)

Published 14 Jul 2014 in cs.CV

Abstract: The rapid development of 3D technology and computer vision applications have motivated a thrust of methodologies for depth acquisition and estimation. However, most existing hardware and software methods have limited performance due to poor depth precision, low resolution and high computational cost. In this paper, we present a computationally efficient method to recover dense depth maps from sparse measurements. We make three contributions. First, we provide empirical evidence that depth maps can be encoded much more sparsely than natural images by using common dictionaries such as wavelets and contourlets. We also show that a combined wavelet-contourlet dictionary achieves better performance than using either dictionary alone. Second, we propose an alternating direction method of multipliers (ADMM) to achieve fast reconstruction. A multi-scale warm start procedure is proposed to speed up the convergence. Third, we propose a two-stage randomized sampling scheme to optimally choose the sampling locations, thus maximizing the reconstruction performance for any given sampling budget. Experimental results show that the proposed method produces high quality dense depth estimates, and is robust to noisy measurements. Applications to real data in stereo matching are demonstrated.

Summary

We haven't generated a summary for this paper yet.