Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate well-supported Nash equilibria in symmetric bimatrix games (1407.3004v1)

Published 11 Jul 2014 in cs.GT

Abstract: The $\varepsilon$-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than $\varepsilon$ to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant $\varepsilon$ currently known for which there is a polynomial-time algorithm that computes an $\varepsilon$-well-supported Nash equilibrium in bimatrix games is slightly below $2/3$. In this paper we study this problem for symmetric bimatrix games and we provide a polynomial-time algorithm that gives a $(1/2+\delta)$-well-supported Nash equilibrium, for an arbitrarily small positive constant $\delta$.

Citations (13)

Summary

We haven't generated a summary for this paper yet.