Papers
Topics
Authors
Recent
Search
2000 character limit reached

Commuting Toeplitz Operators on Bounded Symmetric Domains and Multiplicity-Free Restrictions of Holomorphic Discrete Series

Published 9 Jul 2014 in math.OA and math.RT | (1407.2398v1)

Abstract: For any given bounded symmetric domain, we prove the existence of commutative $C*$-algebras generated by Toeplitz operators acting on any weighted Bergman space. The symbols of the Toeplitz operators that generate such algebras are defined by essentially bounded functions invariant under suitable subgroups of the group of biholomorphisms of the domain. These subgroups include the maximal compact groups of biholomorphisms. We prove the commutativity of the Toeplitz operators by considering the Bergman spaces as the underlying space of the holomorphic discrete series and then applying known multiplicity-free results for restrictions to certain subgroups of the holomorphic discrete series. In the compact case we completely characterize the subgroups that define invariant symbols that yield commuting Toeplitz operators in terms of the multiplicity-free property.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.