Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Higher-Order Tensor Decomposition via Parallel ADMM (1407.1399v1)

Published 5 Jul 2014 in cs.NA and cs.LG

Abstract: Higher-order tensors are becoming prevalent in many scientific areas such as computer vision, social network analysis, data mining and neuroscience. Traditional tensor decomposition approaches face three major challenges: model selecting, gross corruptions and computational efficiency. To address these problems, we first propose a parallel trace norm regularized tensor decomposition method, and formulate it as a convex optimization problem. This method does not require the rank of each mode to be specified beforehand, and can automatically determine the number of factors in each mode through our optimization scheme. By considering the low-rank structure of the observed tensor, we analyze the equivalent relationship of the trace norm between a low-rank tensor and its core tensor. Then, we cast a non-convex tensor decomposition model into a weighted combination of multiple much smaller-scale matrix trace norm minimization. Finally, we develop two parallel alternating direction methods of multipliers (ADMM) to solve our problems. Experimental results verify that our regularized formulation is effective, and our methods are robust to noise or outliers.

Citations (24)

Summary

We haven't generated a summary for this paper yet.