Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rokhlin dimension for compact group actions (1407.1277v2)

Published 4 Jul 2014 in math.OA, math.DS, and math.FA

Abstract: We introduce and systematically study the notion of Rokhlin dimension (with and without commuting towers) for compact group actions on $C*$-algebras. This notion generalizes the one introduced by Hirshberg, Winter and Zacharias for finite groups, and contains the Rokhlin property as the zero dimensional case. We show, by means of an example, that commuting towers cannot always be arranged, even in the absence of $K$-theoretic obstructions. For a compact Lie group action on a compact Hausdorff space, freeness is equivalent to finite Rokhlin dimension of the induced action. We compare the notion of finite Rokhlin dimension to other existing definitions of noncommutative freeness for compact group actions. We obtain further $K$-theoretic obstructions to having an action of a non-finite compact Lie group with finite Rokhlin dimension with commuting towers, and use them to confirm a conjecture of Phillips.

Summary

We haven't generated a summary for this paper yet.