Papers
Topics
Authors
Recent
2000 character limit reached

Universal Arbitrage Aggregator in Discrete Time Markets under Uncertainty

Published 3 Jul 2014 in q-fin.MF and math.PR | (1407.0948v2)

Abstract: In a model independent discrete time financial market, we discuss the richness of the family of martingale measures in relation to different notions of Arbitrage, generated by a class $\mathcal{S}$ of significant sets, which we call Arbitrage de la classe $\mathcal{S}$. The choice of $\mathcal{S}$ reflects into the intrinsic properties of the class of polar sets of martingale measures. In particular: for S=${\Omega}$ absence of Model Independent Arbitrage is equivalent to the existence of a martingale measure; for $\mathcal{S}$ being the open sets, absence of Open Arbitrage is equivalent to the existence of full support martingale measures. These results are obtained by adopting a technical filtration enlargement and by constructing a universal aggregator of all arbitrage opportunities. We further introduce the notion of market feasibility and provide its characterization via arbitrage conditions. We conclude providing a dual representation of Open Arbitrage in terms of weakly open sets of probability measures, which highlights the robust nature of this concept.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.