Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Squares of Random Linear Codes (1407.0848v3)

Published 3 Jul 2014 in cs.IT and math.IT

Abstract: Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code "typically" fill the whole space? We give a positive answer, for codes of dimension $k$ and length roughly $\frac{1}{2}k2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise computation of the number of quadratic forms of a given rank, and the number of their zeros.

Citations (62)

Summary

We haven't generated a summary for this paper yet.