2000 character limit reached
Maximal function and Carleson measures in Békollé-Bonami weights (1407.0551v2)
Published 2 Jul 2014 in math.CA
Abstract: Let $\omega$ be a B\'ekoll\'e-Bonami weight. We give a complete characterization of the positive measures $\mu$ such that $$\int_{\mathcal H}|M_\omega f(z)|qd\mu(z)\le C\left(\int_{\mathcal H}|f(z)|p\omega(z)dV(z)\right){q/p}$$ and $$\mu\left({z\in \mathcal H: Mf(z)>\lambda}\right)\le \frac{C}{\lambdaq}\left(\int_{\mathcal H}|f(z)|p\omega(z)dV(z)\right){q/p}$$ where $M_\omega$ is the weighted Hardy-Littlewood maximal function on the upper-half plane $\mathcal H$, and $1\le p,q<\infty$.