Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The asymptotic complexity of matrix reduction over finite fields (1406.5826v1)

Published 23 Jun 2014 in cs.DS, cs.CC, and math.CO

Abstract: Consider an invertible n \times n matrix over some field. The Gauss-Jordan elimination reduces this matrix to the identity matrix using at most n2 row operations and in general that many operations might be needed. In [1] the authors considered matrices in GL(n;q), the set of n \times n invertible matrices in the finite field of q elements, and provided an algorithm using only row operations which performs asymptotically better than the Gauss-Jordan elimination. More specifically their striped elimination algorithm' has asymptotic complexity \frac{n^2}{\log_q{n}}. Furthermore they proved that up to a constant factor this algorithm is best possible as almost all matrices in GL(n;g) need asymptotically at least \frac{n^2}{2\log_q{n}} operations. In this short note we show that thestriped elimination algorithm' is asymptotically optimal by proving that almost all matrices in GL(n;q) need asymptotically at least frac{n2}{\log_q{n}} operations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com