Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free transport for finite depth subfactor planar algebras (1406.4766v2)

Published 18 Jun 2014 in math.OA

Abstract: Given a finite depth subfactor planar algebra $\mathcal{P}$ endowed with the graded $$-algebra structures ${Gr_k+ \mathcal{P}}{k\in\mathbb{N}}$ of Guionnet, Jones, and Shlyakhtenko, there is a sequence of canonical traces $Tr{k,+}$ on $Gr_k+\mathcal{P}$ induced by the Temperley-Lieb diagrams and a sequence of trace-preserving embeddings into the bounded operators on a Hilbert space. Via these embeddings the $$-algebras ${Gr_k+\mathcal{P}}_{k\in \mathbb{N}}$ generate a tower of non-commutative probability spaces ${M_{k,+}}{k\in\mathbb{N}}$ whose inclusions recover $\mathcal{P}$ as its standard invariant. We show that traces $Tr{k,+}{(v)}$ induced by certain small perturbations of the Temperley-Lieb diagrams yield trace-preserving embeddings of $Gr_k+\mathcal{P}$ that generate the same tower ${M_{k,+}}_{k\in\mathbb{N}}$.

Summary

We haven't generated a summary for this paper yet.