Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting information from S-curves of language change (1406.4498v2)

Published 17 Jun 2014 in physics.soc-ph, cs.CL, and physics.data-an

Abstract: It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period, and slow end). In this paper, we analyze how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g., the Bass dynamics on complex networks) we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism. (published at "J. R. Soc. Interface, vol. 11, no. 101, (2014) 1044"; DOI: http://dx.doi.org/10.1098/rsif.2014.1044)

Citations (37)

Summary

We haven't generated a summary for this paper yet.