Papers
Topics
Authors
Recent
2000 character limit reached

Exponential approach to, and properties of, a non-equilibrium steady state in a dilute gas

Published 16 Jun 2014 in math-ph and math.MP | (1406.4097v1)

Abstract: We investigate a kinetic model of a system in contact with several thermal reservoirs at different temperatures $T_\alpha$. Our system is a spatially uniform dilute gas whose internal dynamics is described by the nonlinear Boltzmann equation with Maxwellian collisions. Similarly, the interaction with reservoir $\alpha$ is represented by a Markovian process that has the Maxwellian $M_{T_\alpha}$ as its stationary state. We prove existence and uniqueness of a non-equilibrium steady state (NESS) and show exponential convergence to this NESS in a metric on probability measures introduced into the study of Maxwellian collisions by Gabetta, Toscani and Wenberg (GTW). This shows that the GTW distance between the current velocity distribution to the steady-state velocity distribution is a Lyapunov functional for the system. We also derive expressions for the entropy production in the system plus the reservoirs which is always positive.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.