Accelerating the alternating projection algorithm for the case of affine subspaces using supporting hyperplanes
Abstract: The von Neumann-Halperin method of alternating projections converges strongly to the projection of a given point onto the intersection of finitely many closed affine subspaces. We propose acceleration schemes making use of two ideas: Firstly, each projection onto an affine subspace identifies a hyperplane of codimension 1 containing the intersection, and secondly, it is easy to project onto a finite intersection of such hyperplanes. We give conditions for which our accelerations converge strongly. Finally, we perform numerical experiments to show that these accelerations perform well for a matrix model updating problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.