Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Laplacian K-modes algorithm for clustering (1406.3895v1)

Published 16 Jun 2014 in cs.LG, stat.ME, and stat.ML

Abstract: In addition to finding meaningful clusters, centroid-based clustering algorithms such as K-means or mean-shift should ideally find centroids that are valid patterns in the input space, representative of data in their cluster. This is challenging with data having a nonconvex or manifold structure, as with images or text. We introduce a new algorithm, Laplacian K-modes, which naturally combines three powerful ideas in clustering: the explicit use of assignment variables (as in K-means); the estimation of cluster centroids which are modes of each cluster's density estimate (as in mean-shift); and the regularizing effect of the graph Laplacian, which encourages similar assignments for nearby points (as in spectral clustering). The optimization algorithm alternates an assignment step, which is a convex quadratic program, and a mean-shift step, which separates for each cluster centroid. The algorithm finds meaningful density estimates for each cluster, even with challenging problems where the clusters have manifold structure, are highly nonconvex or in high dimension. It also provides centroids that are valid patterns, truly representative of their cluster (unlike K-means), and an out-of-sample mapping that predicts soft assignments for a new point.

Citations (8)

Summary

We haven't generated a summary for this paper yet.