2000 character limit reached
Relaxed ISS Small-Gain Theorems for Discrete-Time Systems (1406.3224v2)
Published 12 Jun 2014 in math.DS, cs.SY, and math.OC
Abstract: In this paper ISS small-gain theorems for discrete-time systems are stated, which do not require input-to-state stability (ISS) of each subsystem. This approach weakens conservatism in ISS small-gain theory, and for the class of exponentially ISS systems we are able to prove that the proposed relaxed small-gain theorems are non-conservative in a sense to be made precise. The proofs of the small-gain theorems rely on the construction of a dissipative finite-step ISS Lyapunov function which is introduced in this work. Furthermore, dissipative finite-step ISS Lyapunov functions, as relaxations of ISS Lyapunov functions, are shown to be sufficient and necessary to conclude ISS of the overall system.