Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two weight inequality for Bergman projection (1406.2857v2)

Published 11 Jun 2014 in math.FA and math.CV

Abstract: The motivation of this paper comes from the two weight inequality $$|P_\omega(f)|{Lp_v}\le C|f|{Lp_v},\quad f\in Lp_v,$$ for the Bergman projection $P_\omega$ in the unit disc. We show that the boundedness of $P_\omega$ on $Lp_v$ is characterized in terms of self-improving Muckenhoupt and Bekoll\'e-Bonami type conditions when the radial weights $v$ and $\omega$ admit certain smoothness. En route to the proof we describe the asymptotic behavior of the $Lp$-means and the $Lp_v$-integrability of the reproducing kernels of the weighted Bergman space $A2_\omega$.

Summary

We haven't generated a summary for this paper yet.