Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new characterization of chord-arc domains (1406.2743v1)

Published 10 Jun 2014 in math.CA and math.AP

Abstract: We show that if $\Omega \subset \mathbb{R}{n+1}$, $n\geq 1$, is a uniform domain (aka 1-sided NTA domain), i.e., a domain which enjoys interior Corkscrew and Harnack Chain conditions, then uniform rectifiability of the boundary of $\Omega$ implies the existence of exterior Corkscrew points at all scales, so that in fact, $\Omega$ is a chord-arc domain, i.e., a domain with an Ahlfors-David regular boundary which satisfies both interior and exterior Corkscrew conditions, and an interior Harnack Chain condition. We discuss some implications of this result, for theorems of F. and M. Riesz type, and for certain free boundary problems.

Summary

We haven't generated a summary for this paper yet.