2000 character limit reached
Disjoint edges in topological graphs and the tangled-thrackle conjecture (1406.2726v2)
Published 10 Jun 2014 in math.CO and cs.CG
Abstract: It is shown that for a constant $t\in \mathbb{N}$, every simple topological graph on $n$ vertices has $O(n)$ edges if it has no two sets of $t$ edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is $K_{t,t}$-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every $n$-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most $O(n)$ edges.