Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilevel path simulation for weak approximation schemes (1406.2581v3)

Published 10 Jun 2014 in q-fin.CP

Abstract: In this paper we discuss the possibility of using multilevel Monte Carlo (MLMC) methods for weak approximation schemes. It turns out that by means of a simple coupling between consecutive time discretisation levels, one can achieve the same complexity gain as under the presence of a strong convergence. We exemplify this general idea in the case of weak Euler scheme for L\'evy driven stochastic differential equations, and show that, given a weak convergence of order $\alpha\geq 1/2,$ the complexity of the corresponding "weak" MLMC estimate is of order $\varepsilon{-2}\log {2}(\varepsilon).$ The numerical performance of the new "weak" MLMC method is illustrated by several numerical examples.

Summary

We haven't generated a summary for this paper yet.