Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvalues and Transduction of Morphic Sequences: Extended Version (1406.1754v1)

Published 5 Jun 2014 in cs.FL

Abstract: We study finite state transduction of automatic and morphic sequences. Dekking proved that morphic sequences are closed under transduction and in particular morphic images. We present a simple proof of this fact, and use the construction in the proof to show that non-erasing transductions preserve a condition called alpha-substitutivity. Roughly, a sequence is alpha-substitutive if the sequence can be obtained as the limit of iterating a substitution with dominant eigenvalue alpha. Our results culminate in the following fact: for multiplicatively independent real numbers alpha and beta, if v is an alpha-substitutive sequence and w is a beta-substitutive sequence, then v and w have no common non-erasing transducts except for the ultimately periodic sequences. We rely on Cobham's theorem for substitutions, a recent result of Durand.

Citations (2)

Summary

We haven't generated a summary for this paper yet.