Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projection of polyhedral cones and linear vector optimization (1406.1708v1)

Published 6 Jun 2014 in math.OC

Abstract: Consider a polyhedral convex cone which is given by a finite number of linear inequalities. We investigate the problem to project this cone into a subspace and show that this problem is closely related to linear vector optimization: We define a cone projection problem using the data of a given linear vector optimization problem and consider the problem to determine the extreme directions and a basis of the lineality space of the projected cone $K$. The result of this problem yields a solution of the linear vector optimization problem. Analogously, the dual cone projection problem is related to the polar cone of $K$: One obtains a solution of the geometric dual linear vector optimization problem. We sketch the idea of a resulting algorithm for solving arbitrary linear vector optimization problems and provide an alternative proof of the geometric duality theorem based on duality of polytopes.

Summary

We haven't generated a summary for this paper yet.