Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Reduction for DAEs with an Application to Flow Control (1406.1253v1)

Published 5 Jun 2014 in math.DS, cs.NA, cs.SY, and math.NA

Abstract: Direct numerical simulation of dynamical systems is of fundamental importance in studying a wide range of complex physical phenomena. However, the ever-increasing need for accuracy leads to extremely large-scale dynamical systems whose simulations impose huge computational demands. Model reduction offers one remedy to this problem by producing simpler reduced models that are both easier to analyze and faster to simulate while accurately replicating the original behavior. Interpolatory model reduction methods have emerged as effective candidates for very large-scale problems due to their ability to produce high-fidelity (optimal in some cases) reduced models for linear and bilinear dynamical systems with modest computational cost. In this paper, we will briefly review the interpolation framework for model reduction and describe a well studied flow control problem that requires model reduction of a large scale system of differential algebraic equations. We show that interpolatory model reduction produces a feedback control strategy that matches the structure of much more expensive control design methodologies.

Citations (14)

Summary

We haven't generated a summary for this paper yet.