Relationship between Neumann solutions for two-phase Lame-Clapeyron-Stefan problems with convective and temperature boundary conditions
Abstract: We obtain for the two-phase Lam\'e-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981), 491-497 is also recovered when a heat flux condition was imposed at the fixed face.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.