Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Durfee-type bound for some non-degenerate complete intersection singularities (1405.7494v3)

Published 29 May 2014 in math.AG

Abstract: The Milnor number, \mu(X,0), and the singularity genus, p_g(X,0), are fundamental invariants of isolated hypersurface singularities (more generally, of local complete intersections). The long standing Durfee conjecture (and its generalization) predicted the inequality \mu(X,0) \geq (n+1)!p_g(X,0), here n=dim(X,0). Recently we have constructed counterexamples, proposed a corrected bound and verified it for the homogeneous complete intersections. In the current paper we treat the case of germs with Newton-non-degenerate principal part when the Newton diagrams are "large enough", i.e. they are large multiples of some other diagrams. In the case of local complete intersections we prove the corrected inequality, while in the hypersurface case we prove an even stronger inequality.

Summary

We haven't generated a summary for this paper yet.