Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Compression of Envelope Classes: Tight Characterization via Poisson Sampling (1405.7460v1)

Published 29 May 2014 in cs.IT, cs.LG, and math.IT

Abstract: The Poisson-sampling technique eliminates dependencies among symbol appearances in a random sequence. It has been used to simplify the analysis and strengthen the performance guarantees of randomized algorithms. Applying this method to universal compression, we relate the redundancies of fixed-length and Poisson-sampled sequences, use the relation to derive a simple single-letter formula that approximates the redundancy of any envelope class to within an additive logarithmic term. As a first application, we consider i.i.d. distributions over a small alphabet as a step-envelope class, and provide a short proof that determines the redundancy of discrete distributions over a small al- phabet up to the first order terms. We then show the strength of our method by applying the formula to tighten the existing bounds on the redundancy of exponential and power-law classes, in particular answering a question posed by Boucheron, Garivier and Gassiat.

Citations (4)

Summary

We haven't generated a summary for this paper yet.