Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Dictionary Learning by a Variational Bayesian Group Sparse Nonnegative Matrix Factorization (1405.6914v1)

Published 27 May 2014 in cs.CV, cs.LG, and stat.ML

Abstract: Nonnegative matrix factorization (NMF) with group sparsity constraints is formulated as a probabilistic graphical model and, assuming some observed data have been generated by the model, a feasible variational Bayesian algorithm is derived for learning model parameters. When used in a supervised learning scenario, NMF is most often utilized as an unsupervised feature extractor followed by classification in the obtained feature subspace. Having mapped the class labels to a more general concept of groups which underlie sparsity of the coefficients, what the proposed group sparse NMF model allows is incorporating class label information to find low dimensional label-driven dictionaries which not only aim to represent the data faithfully, but are also suitable for class discrimination. Experiments performed in face recognition and facial expression recognition domains point to advantages of classification in such label-driven feature subspaces over classification in feature subspaces obtained in an unsupervised manner.

Citations (8)

Summary

We haven't generated a summary for this paper yet.