Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Certain Arithmetic Integer Additive set-indexers of Graphs (1405.6617v3)

Published 20 May 2014 in math.CO

Abstract: Let $\mathbb{N}_0$ denote the set of all non-negative integers and $\mathcal{P}(\mathbb{N}_0)$ be its power set. An integer additive set-indexer (IASI) of a graph $G$ is an injective function $f:V(G)\to \mathcal{P}(\mathbb{N}_0)$ such that the induced function $f+:E(G) \to \mathcal{P}(\mathbb{N}_0)$ defined by $f+ (uv) = f(u)+ f(v)$ is also injective, where $\mathbb{N}_0$ is the set of all non-negative integers. A graph $G$ which admits an IASI is called an IASI graph. An IASI of a graph $G$ is said to be an arithmetic IASI if the elements of the set-labels of all vertices and edges of $G$ are in arithmetic progressions. In this paper, we discuss about two special types of arithmetic IASIs.

Summary

We haven't generated a summary for this paper yet.