Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Hasse invariants on splitting models of Hilbert modular varieties (1405.6349v3)

Published 24 May 2014 in math.NT

Abstract: Let $F$ be a totally real field of degree $g$, and let $p$ be a prime number. We construct $g$ partial Hasse invariants on the characteristic $p$ fiber of the Pappas-Rapoport splitting model of the Hilbert modular variety for $F$ with level prime to $p$, extending the usual partial Hasse invariants defined over the Rapoport locus. In particular, when $p$ ramifies in $F$, we solve the problem of lack of partial Hasse invariants. Using the stratification induced by these generalized partial Hasse invariants on the splitting model, we prove in complete generality the existence of Galois pseudo-representations attached to Hecke eigenclasses of paritious weight occurring in the coherent cohomology of Hilbert modular varieties $\mathrm{mod}$ $pm$, extending a previous result of M. Emerton and the authors which required $p$ to be unramified in $F$.

Summary

We haven't generated a summary for this paper yet.