Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse regression for longitudinal data (1405.6017v2)

Published 23 May 2014 in math.ST and stat.TH

Abstract: Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferr\'{e} and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.

Summary

We haven't generated a summary for this paper yet.