Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic linear bounds of Castelnuovo-Mumford regularity in multigraded modules (1405.5970v3)

Published 23 May 2014 in math.AC

Abstract: Let $A$ be a Noetherian standard $\mathbb{N}$-graded algebra over an Artinian local ring $A_0$. Let $I_1,\ldots,I_t$ be homogeneous ideals of $A$ and $M$ a finitely generated $\mathbb{N}$-graded $A$-module. We prove that there exist two integers $k$ and $k'$ such that [ \mathrm{reg}(I_1{n_1} \cdots I_t{n_t} M) \leq (n_1 + \cdots + n_t) k + k' \quad\mbox{for all }~n_1,\ldots,n_t \in \mathbb{N}. ]

Summary

We haven't generated a summary for this paper yet.