Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tagged particle diffusion in one-dimensional systems with Hamiltonian dynamics - II (1405.5718v2)

Published 22 May 2014 in cond-mat.stat-mech

Abstract: We study various temporal correlation functions of a tagged particle in one-dimensional systems of interacting point particles evolving with Hamiltonian dynamics. Initial conditions of the particles are chosen from the canonical thermal distribution. The correlation functions are studied in finite systems, and their forms examined at short and long times. Various one-dimensional systems are studied. Results of numerical simulations for the Fermi-Pasta-Ulam chain are qualitatively similar to results for the harmonic chain, and agree unexpectedly well with a simple description in terms of linearized equations for damped fluctuating sound waves. Simulation results for the alternate mass hard particle gas reveal that - in contradiction to our earlier results [1] with smaller system sizes - the diffusion constant slowly converges to a constant value, in a manner consistent with mode coupling theories. Our simulations also show that the behaviour of the Lennard-Jones gas depends on its density. At low densities, it behaves like a hard-particle gas, and at high densities like an anharmonic chain. In all the systems studied, the tagged particle was found to show normal diffusion asymptotically, with convergence times depending on the system under study. Finite size effects show up at time scales larger than sound traversal times, their nature being system-specific.

Summary

We haven't generated a summary for this paper yet.