Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Hybrid Inline and Out-of-line Deduplication for Backup Storage (1405.5661v1)

Published 22 May 2014 in cs.DC and cs.DB

Abstract: Backup storage systems often remove redundancy across backups via inline deduplication, which works by referring duplicate chunks of the latest backup to those of existing backups. However, inline deduplication degrades restore performance of the latest backup due to fragmentation, and complicates deletion of ex- pired backups due to the sharing of data chunks. While out-of-line deduplication addresses the problems by forward-pointing existing duplicate chunks to those of the latest backup, it introduces additional I/Os of writing and removing duplicate chunks. We design and implement RevDedup, an efficient hybrid inline and out-of-line deduplication system for backup storage. It applies coarse-grained inline deduplication to remove duplicates of the latest backup, and then fine-grained out-of-line reverse deduplication to remove duplicates from older backups. Our reverse deduplication design limits the I/O overhead and prepares for efficient deletion of expired backups. Through extensive testbed experiments using synthetic and real-world datasets, we show that RevDedup can bring high performance to the backup, restore, and deletion operations, while maintaining high storage efficiency comparable to conventional inline deduplication.

Citations (58)

Summary

We haven't generated a summary for this paper yet.