Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scale invariant elliptic operators with singular coefficients (1405.5657v1)

Published 22 May 2014 in math.AP

Abstract: We show that a realization of the operator $L=|x|\alpha\Delta +c|x|{\alpha-1}\frac{x}{|x|}\cdot\nabla -b|x|{\alpha-2}$ generates a semigroup in $Lp(\mathbb {R}N)$ if and only if $D_c=b+(N-2+c)2/4 > 0$ and $s_1+\min{0,2-\alpha}<N/p<s_2+\max{0,2-\alpha}$, where $s_i$ are the roots of the equation $b+s(N-2+c-s)=0$, or $D_c=0$ and $s_0+\min{0,2-\alpha} \le N/p \le s_0+\max{0,2-\alpha}$, where $s_0$ is the unique root of the above equation. The domain of the generator is also characterized.

Summary

We haven't generated a summary for this paper yet.