Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach (1405.5576v5)

Published 21 May 2014 in stat.ML and stat.CO

Abstract: Iterative methods for fitting a Gaussian Random Field (GRF) model via maximum likelihood (ML) estimation requires solving a nonconvex optimization problem. The problem is aggravated for anisotropic GRFs where the number of covariance function parameters increases with the dimension. Even evaluation of the likelihood function requires $O(n3)$ floating point operations, where $n$ denotes the number of data locations. In this paper, we propose a new two-stage procedure to estimate the parameters of second-order stationary GRFs. First, a convex likelihood problem regularized with a weighted $\ell_1$-norm, utilizing the available distance information between observation locations, is solved to fit a sparse precision (inverse covariance) matrix to the observed data. Second, the parameters of the covariance function are estimated by solving a least squares problem. Theoretical error bounds for the solutions of stage I and II problems are provided, and their tightness are investigated.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (10)

Summary

We haven't generated a summary for this paper yet.