Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circle detection on images using Learning Automata (1405.5406v1)

Published 21 May 2014 in cs.CV

Abstract: Circle detection over digital images has received considerable attention from the computer vision community over the last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of conventional Hough transform principles. The proposed algorithm is based on Learning Automata (LA) which is a probabilistic optimization method that explores an unknown random environment by progressively improving the performance via a reinforcement signal (objective function). The approach uses the encoding of three non-collinear points as a candidate circle over the edge image. A reinforcement signal (matching function) indicates if such candidate circles are actually present in the edge map. Guided by the values of such reinforcement signal, the probability set of the encoded candidate circles is modified through the LA algorithm so that they can fit to the actual circles on the edge map. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.

Citations (28)

Summary

We haven't generated a summary for this paper yet.