Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elementary totally disconnected locally compact groups (1405.4851v4)

Published 19 May 2014 in math.GR and math.LO

Abstract: We identify the class of elementary groups: the smallest class of totally disconnected locally compact second countable (t.d.l.c.s.c.) groups that contains the profinite groups and the discrete groups, is closed under group extensions of profinite groups and discrete groups, and is closed under countable increasing unions. We show this class enjoys robust permanence properties. In particular, it is closed under group extension, taking closed subgroups, taking Hausdorff quotients, and inverse limits. A characterization of elementary groups in terms of well-founded descriptive-set-theoretic trees is then presented. We conclude with three applications. We first prove structure results for general t.d.l.c.s.c. groups. In particular, we show a compactly generated t.d.l.c.s.c. group decomposes into elementary groups and topologically characteristically simple groups via group extension. We then prove two local-to-global structure theorems: Locally solvable t.d.l.c.s.c. groups are elementary and [A]-regular t.d.l.c.s.c. groups are elementary.

Summary

We haven't generated a summary for this paper yet.