Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved algorithm for computing separating linear forms for bivariate systems (1405.4740v1)

Published 19 May 2014 in cs.CG and cs.SC

Abstract: We address the problem of computing a linear separating form of a system of two bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes different values when evaluated at the distinct solutions of the system. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and this is the bottleneck of these algorithms in terms of worst-case bit complexity. We present for this problem a new algorithm of worst-case bit complexity $\sOB(d7+d6\tau)$ where $d$ and $\tau$ denote respectively the maximum degree and bitsize of the input (and where $\sO$ refers to the complexity where polylogarithmic factors are omitted and $O_B$ refers to the bit complexity). This algorithm simplifies and decreases by a factor $d$ the worst-case bit complexity presented for this problem by Bouzidi et al. \cite{bouzidiJSC2014a}. This algorithm also yields, for this problem, a probabilistic Las-Vegas algorithm of expected bit complexity $\sOB(d5+d4\tau)$.

Citations (13)

Summary

We haven't generated a summary for this paper yet.