Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremes of a class of nonhomogeneous Gaussian random fields (1405.2952v3)

Published 12 May 2014 in math.PR

Abstract: This contribution establishes exact tail asymptotics of $\sup_{(s,t)\in\mathbf{E}}$ $X(s,t)$ for a large class of nonhomogeneous Gaussian random fields $X$ on a bounded convex set $\mathbf{E}\subset\mathbb{R}2$, with variance function that attains its maximum on a segment on $\mathbf{E}$. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random fields with unique maximum point of the variance. Applications of our result include the derivation of the exact tail asymptotics of the Shepp statistics for stationary Gaussian processes, Brownian bridge and fractional Brownian motion as well as the exact tail asymptotic expansion for the maximum loss and span of stationary Gaussian processes.

Summary

We haven't generated a summary for this paper yet.