Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Practical numbers and the distribution of divisors (1405.2585v3)

Published 11 May 2014 in math.NT

Abstract: An integer $n$ is called practical if every $m\le n$ can be written as a sum of distinct divisors of $n$. We show that the number of practical numbers below $x$ is asymptotic to $c x/\log x$, as conjectured by Margenstern. We also give an asymptotic estimate for the number of integers below $x$ whose maximum ratio of consecutive divisors is at most $t$, valid uniformly for $t\ge 2$.

Summary

We haven't generated a summary for this paper yet.