Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterisation of gradient flows on finite state Markov chains (1405.2552v3)

Published 11 May 2014 in math.PR, math.CA, math.DG, and math.MG

Abstract: In his 2011 work, Maas has shown that the law of any time-reversible continuous-time Markov chain with finite state space evolves like a gradient flow of the relative entropy with respect to its stationary distribution. In this work we show the converse to the above by showing that if the relative law of a Markov chain with finite state space evolves like a gradient flow of the relative entropy functional, it must be time-reversible. When we allow general functionals in place of the relative entropy, we show that the law of a Markov chain evolves as gradient flow if and only if the generator of the Markov chain is real diagonalisable. Finally, we discuss what aspects of the functional are uniquely determined by the Markov chain.

Summary

We haven't generated a summary for this paper yet.