Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Learners for Multiclass Problems (1405.2420v1)

Published 10 May 2014 in cs.LG

Abstract: The fundamental theorem of statistical learning states that for binary classification problems, any Empirical Risk Minimization (ERM) learning rule has close to optimal sample complexity. In this paper we seek for a generic optimal learner for multiclass prediction. We start by proving a surprising result: a generic optimal multiclass learner must be improper, namely, it must have the ability to output hypotheses which do not belong to the hypothesis class, even though it knows that all the labels are generated by some hypothesis from the class. In particular, no ERM learner is optimal. This brings back the fundmamental question of "how to learn"? We give a complete answer to this question by giving a new analysis of the one-inclusion multiclass learner of Rubinstein et al (2006) showing that its sample complexity is essentially optimal. Then, we turn to study the popular hypothesis class of generalized linear classifiers. We derive optimal learners that, unlike the one-inclusion algorithm, are computationally efficient. Furthermore, we show that the sample complexity of these learners is better than the sample complexity of the ERM rule, thus settling in negative an open question due to Collins (2005).

Citations (77)

Summary

We haven't generated a summary for this paper yet.